Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Boron-based materials have been widely studied for hydrogen storage applications. Examples of these compounds are borohydrides and boranes. However, all of these present some disadvantages that have hindered their potential application as hydrogen storage materials in the solid-state. Thus, different strategies have been developed to improve the dehydrogenation properties of these materials. The purpose of this review is to provide an overview of recent advances (for the period 2015–2021) in the destabilization strategies that have been considered for selected boron-based compounds. With this aim, we selected seven of the most investigated boron-based compounds for hydrogen storage applications: lithium borohydride, sodium borohydride, magnesium borohydride, calcium borohydride, ammonia borane, hydrazine borane and hydrazine bisborane. The destabilization strategies include the use of additives, the chemical modification and the nanosizing of these compounds. These approaches were analyzed for each one of the selected boron-based compounds and these are discussed in the present review.

Details

Title
Destabilization of Boron-Based Compounds for Hydrogen Storage in the Solid-State: Recent Advances
Author
Castilla-Martinez, Carlos A 1   VIAFID ORCID Logo  ; Moury, Romain 2   VIAFID ORCID Logo  ; Ould-Amara, Salem 3 ; Demirci, Umit B 4   VIAFID ORCID Logo 

 Laboratoire des Fluides Complexes et leurs Réservoirs, UMR 5150, Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, 64600 Anglet, France 
 Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283, Le Mans Université, CNRS Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France; [email protected] 
 Laboratoire Analyse, Modélisation, Matériaux pour la Biologie et l’Environment, LAMBE—UMR 8587, Université D’Evry Val d’Essonne, CNRS, 91025 Evry, France; [email protected] 
 Institut Européen des Membranes, IEM—UMR 5635, Université de Montpellier, ENSCM, CNRS, 34095 Montpellier, France; [email protected] 
First page
7003
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2596028136
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.