Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The average kappa coefficient of a binary diagnostic test is a parameter that measures the average beyond-chance agreement between the diagnostic test and the gold standard. This parameter depends on the accuracy of the diagnostic test and also on the disease prevalence. This article studies the comparison of the average kappa coefficients of two binary diagnostic tests when the gold standard is not applied to all individuals in a random sample. In this situation, known as partial disease verification, the disease status of some individuals is a missing piece of data. Assuming that the missing data mechanism is missing at random, the comparison of the average kappa coefficients is solved by applying two computational methods: the EM algorithm and the SEM algorithm. With the EM algorithm the parameters are estimated and with the SEM algorithm their variances-covariances are estimated. Simulation experiments have been carried out to study the sizes and powers of the hypothesis tests studied, obtaining that the proposed method has good asymptotic behavior. A function has been written in R to solve the proposed problem, and the results obtained have been applied to the diagnosis of Alzheimer's disease.

Details

Title
Comparison of the Average Kappa Coefficients of Two Binary Diagnostic Tests with Missing Data
Author
Roldán-Nofuentes, José Antonio 1   VIAFID ORCID Logo  ; Regad, Saad Bouh 2 

 Department of Statistics, School of Medicine, University of Granada, 18016 Granada, Spain 
 Epidemiology and Public Health Research Unit and URMCD, School of Medicine, University of Nouakchott Alaasriya, Nouakchott BP 880, Mauritania; [email protected] 
First page
2834
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2596047439
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.