Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Indium-based micro-bump arrays, among other things, are used for the bonding of infrared photodetectors and focal plane arrays. In this paper, several aspects of the fabrication technology of micrometer-sized indium bumps with a smooth surface morphology were investigated. The thermal evaporation of indium has been optimized to achieve ~8 μm-thick layers with a small surface roughness of Ra = 11 nm, indicating a high packing density of atoms. This ensures bump uniformity across the sample, as well as prevents oxidation inside the In columns prior to the reflow. A series of experiments to optimize indium bump fabrication technology, including a shear test of single columns, is described. A reliable, repeatable, simple, and quick approach was developed with the pre-etching of indium columns in a 10% HCl solution preceded by annealing at 120 °C in N2.

Details

Title
Indium-Based Micro-Bump Array Fabrication Technology with Added Pre-Reflow Wet Etching and Annealing
Author
Kozłowski, Paweł; Czuba, Krzysztof  VIAFID ORCID Logo  ; Chmielewski, Krzysztof  VIAFID ORCID Logo  ; Ratajczak, Jacek; Branas, Joanna; Korczyc, Adam; Regiński, Kazimierz; Jasik, Agata  VIAFID ORCID Logo 
First page
6269
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2596055644
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.