Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As temperature changes, red clay is prone to shrink and generate cracks, which weaken the structure and the stability of soil mass, leading to various engineering problems, such as damage and instability in engineering structures. To study the effect of environmental temperature on the crack evolution of red clay, Guilin Red Clay was taken as the research object, and the saturated mud samples were dried at 23, 40, and 60 °C respectively. During the drying process of the samples, the change of moisture content and the evolution process of surface cracks were monitored by high-definition automatic photographing and a weighing device, which were also improved. We used PCAS software to process the crack image, extract various geometric elements, observe, and analyze the change rule of the cracks during the drying process of red clay at different temperatures. The test results show that the cracking evolution of red clay at different temperatures is mainly divided into three stages: (i) the initiation of micro cracks; (ii) crack progress; and (iii) crack stability. With the increase of environmental temperature, stage (i) took less time. Meanwhile, the growth rate of the crack area increased. The number of final crack blocks of soil is significantly reduced. Moreover, the final crack rate is obviously increased. When the temperature is either 23 °C or 40 °C, the initial cracks almost happen at the same time in the samples with different diameters. While the temperature is higher than 60 °C, the cracking time will delay with the increase of the diameter. In addition, the decrease in water content leads to a decrease in the curvature radius of soil particles. Under the joint action of the surface tension and the matrix suction, the distance between red clay particles becomes shorter, so the time for red clay to start to generate cracks will be shorter, and the final crack rate will increase with the increase in temperature.

Details

Title
Temperature Effect on Crack Evolution of Red Clay in Guilin
Author
Xiao, Guiyuan 1 ; Ye, Ziming 2 ; Xu, Guangli 3 ; Zeng, Jian 4 ; Zhang, Lu 5 

 College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541000, China; [email protected]; Faculty of Engineering, China University of Geosciences, Wuhan 430000, China 
 College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541000, China; [email protected]; Department of Civil Engineering, Lushan College of Guangxi University of Science and Technology, Liuzhou 545005, China 
 Faculty of Engineering, China University of Geosciences, Wuhan 430000, China 
 Nanning City Investment Group Modern Industrial Park Development Co., Ltd., Nanning 530219, China 
 College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541000, China; [email protected] 
First page
3025
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2596057964
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.