It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In a radiative Auger process, optical decay leaves other carriers in excited states, resulting in weak red-shifted satellite peaks in the emission spectrum. The appearance of radiative Auger in the emission directly leads to the question if the process can be inverted: simultaneous photon absorption and electronic demotion. However, excitation of the radiative Auger transition has not been shown, neither on atoms nor on solid-state quantum emitters. Here, we demonstrate the optical driving of the radiative Auger transition, linking few-body Coulomb interactions and quantum optics. We perform our experiments on a trion in a semiconductor quantum dot, where the radiative Auger and the fundamental transition form a Λ-system. On driving both transitions simultaneously, we observe a reduction of the fluorescence signal by up to 70%. Our results suggest the possibility of turning resonance fluorescence on and off using radiative Auger as well as THz spectroscopy with optics close to the visible regime.
Radiative Auger is a process that leads to a red-shift of the optical emission of an atom or a charged solid-state quantum emitter. Here, the authors realize the inverse process by optically driving the radiative Auger transition of a short-lived electronic state in a semiconductor quantum dot.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details









1 University of Basel, Department of Physics, Basel, Switzerland (GRID:grid.6612.3) (ISNI:0000 0004 1937 0642)
2 Ruhr-Universität Bochum, Lehrstuhl für Angewandte Festkörperphysik, Bochum, Germany (GRID:grid.5570.7) (ISNI:0000 0004 0490 981X)
3 Universität Münster, Institut für Festkörpertheorie, Münster, Germany (GRID:grid.5949.1) (ISNI:0000 0001 2172 9288)
4 Wrocław University of Science and Technology, Department of Theoretical Physics, Wrocław, Poland (GRID:grid.7005.2) (ISNI:0000 0000 9805 3178)