It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The measure of entropy has an undeniable pivotal role in the field of information theory. This article estimates the Rényi and q-entropies of the power function distribution in the presence of s outliers. The maximum likelihood estimators as well as the Bayesian estimators under uniform and gamma priors are derived. The proposed Bayesian estimators of entropies under symmetric and asymmetric loss functions are obtained. These estimators are computed empirically using Monte Carlo simulation based on Gibbs sampling. Outcomes of the study showed that the precision of the maximum likelihood and Bayesian estimates of both entropies measures improves with sample sizes. The behavior of both entropies estimates increase with number of outliers. Further, Bayesian estimates of the Rényi and q-entropies under squared error loss function are preferable than the other Bayesian estimates under the other loss functions in most of cases. Eventually, real data examples are analyzed to illustrate the theoretical results.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer