Abstract

Background

As COVID-19 continues to spread globally, traditional emergency management measures are facing many practical limitations. The application of big data analysis technology provides an opportunity for local governments to conduct the COVID-19 epidemic emergency management more scientifically. The present study, based on emergency management lifecycle theory, includes a comprehensive analysis of the application framework of China’s SARS epidemic emergency management lacked the support of big data technology in 2003. In contrast, this study first proposes a more agile and efficient application framework, supported by big data technology, for the COVID-19 epidemic emergency management and then analyses the differences between the two frameworks.

Methods

This study takes Hainan Province, China as its case study by using a file content analysis and semistructured interviews to systematically comprehend the strategy and mechanism of Hainan’s application of big data technology in its COVID-19 epidemic emergency management.

Results

Hainan Province adopted big data technology during the four stages, i.e., migration, preparedness, response, and recovery, of its COVID-19 epidemic emergency management. Hainan Province developed advanced big data management mechanisms and technologies for practical epidemic emergency management, thereby verifying the feasibility and value of the big data technology application framework we propose.

Conclusions

This study provides empirical evidence for certain aspects of the theory, mechanism, and technology for local governments in different countries and regions to apply, in a precise, agile, and evidence-based manner, big data technology in their formulations of comprehensive COVID-19 epidemic emergency management strategies.

Details

Title
The application framework of big data technology in the COVID-19 epidemic emergency management in local government—a case study of Hainan Province, China
Author
Mao, Zijun; Zou, Qi; Yao, Hong; Wu, Jingyi
Pages
1-19
Section
Research
Publication year
2021
Publication date
2021
Publisher
BioMed Central
e-ISSN
14712458
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2599219906
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.