It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Isolated spikes and bursts of spikes are thought to provide the two major modes of information coding by neurons. Bursts are known to be crucial for fundamental processes between neuron pairs, such as neuronal communications and synaptic plasticity. Deficits in neuronal bursting can also impair higher cognitive functions and cause mental disorders. Despite these findings on the roles of bursts, whether and how bursts have an advantage over isolated spikes in the network-level computation remains elusive. Here, we demonstrate in a computational model that not isolated spikes but intrinsic bursts can greatly facilitate learning of Lévy flight random walk trajectories by synchronizing burst onsets across neural population. Lévy flight is a hallmark of optimal search strategies and appears in cognitive behaviors such as saccadic eye movements and memory retrieval. Our results suggest that bursting is a crucial component of sequence learning by recurrent neural networks in the brain.
Competing Interest Statement
The authors have declared no competing interest.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer