Full text

Turn on search term navigation

Copyright © 2021 Pauline Shan Qing Yeoh et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Osteoarthritis (OA), especially knee OA, is the most common form of arthritis, causing significant disability in patients worldwide. Manual diagnosis, segmentation, and annotations of knee joints remain as the popular method to diagnose OA in clinical practices, although they are tedious and greatly subject to user variation. Therefore, to overcome the limitations of the commonly used method as above, numerous deep learning approaches, especially the convolutional neural network (CNN), have been developed to improve the clinical workflow efficiency. Medical imaging processes, especially those that produce 3-dimensional (3D) images such as MRI, possess ability to reveal hidden structures in a volumetric view. Acknowledging that changes in a knee joint is a 3D complexity, 3D CNN has been employed to analyse the joint problem for a more accurate diagnosis in the recent years. In this review, we provide a broad overview on the current 2D and 3D CNN approaches in the OA research field. We reviewed 74 studies related to classification and segmentation of knee osteoarthritis from the Web of Science database and discussed the various state-of-the-art deep learning approaches proposed. We highlighted the potential and possibility of 3D CNN in the knee osteoarthritis field. We concluded by discussing the possible challenges faced as well as the potential advancements in adopting 3D CNNs in this field.

Details

Title
Emergence of Deep Learning in Knee Osteoarthritis Diagnosis
Author
Pauline Shan Qing Yeoh 1   VIAFID ORCID Logo  ; Khin Wee Lai 1   VIAFID ORCID Logo  ; Siew Li Goh 2   VIAFID ORCID Logo  ; Hasikin, Khairunnisa 1   VIAFID ORCID Logo  ; Yan Chai Hum 3   VIAFID ORCID Logo  ; Yee, Kai Tee 3   VIAFID ORCID Logo  ; Dhanalakshmi, Samiappan 4   VIAFID ORCID Logo 

 Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia 
 Sports Medicine Unit, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia 
 Department of Mechatronics & Biomedical Engineering, Universiti Tunku Abdul Rahman, Sungai Long 43000, Malaysia 
 Department of Electronics and Communication Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India 
Editor
Bai Yuan Ding
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
16875265
e-ISSN
16875273
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2600065950
Copyright
Copyright © 2021 Pauline Shan Qing Yeoh et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/