Abstract

The control of the in-plane domain evolution in ferroelectric thin films is not only critical to understanding ferroelectric phenomena but also to enabling functional device fabrication. However, in-plane polarized ferroelectric thin films typically exhibit complicated multi-domain states, not desirable for optoelectronic device performance. Here we report a strategy combining interfacial symmetry engineering and anisotropic strain to design single-domain, in-plane polarized ferroelectric BaTiO3 thin films. Theoretical calculations predict the key role of the BaTiO3/PrScO3(110)O substrate interfacial environment, where anisotropic strain, monoclinic distortions, and interfacial electrostatic potential stabilize a single-variant spontaneous polarization. A combination of scanning transmission electron microscopy, piezoresponse force microscopy, ferroelectric hysteresis loop measurements, and second harmonic generation measurements directly reveals the stabilization of the in-plane quasi-single-domain polarization state. This work offers design principles for engineering in-plane domains of ferroelectric oxide thin films, which is a prerequisite for high performance optoelectronic devices.

In-plane polarized ferroelectric thin films typically exhibit complicated multidomain states, not desirable for optoelectronic device performance. Here, the authors combine interfacial symmetry engineering and anisotropic strain to design single-domain in-plane polarized ferroelectric BaTiO3 films.

Details

Title
In-plane quasi-single-domain BaTiO3 via interfacial symmetry engineering
Author
Lee, J W 1 ; Eom, K 1   VIAFID ORCID Logo  ; Paudel, T R 2   VIAFID ORCID Logo  ; Wang, B 3   VIAFID ORCID Logo  ; Lu H 4   VIAFID ORCID Logo  ; Huyan, H X 5 ; Lindemann, S 1 ; Ryu, S 1 ; Lee, H 1 ; Kim, T H 1 ; Yuan, Y 3   VIAFID ORCID Logo  ; Zorn, J A 3 ; Lei, S 3 ; Gao, W P 5 ; Tybell, T 6   VIAFID ORCID Logo  ; Gopalan, V 3   VIAFID ORCID Logo  ; Pan, X Q 7   VIAFID ORCID Logo  ; Gruverman, A 4   VIAFID ORCID Logo  ; Chen, L Q 3   VIAFID ORCID Logo  ; Tsymbal, E Y 4   VIAFID ORCID Logo  ; Eom, C B 1   VIAFID ORCID Logo 

 University of Wisconsin-Madison, Department of Materials Science and Engineering, Madison, USA (GRID:grid.14003.36) (ISNI:0000 0001 2167 3675) 
 University of Nebraska, Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, Lincoln, USA (GRID:grid.24434.35) (ISNI:0000 0004 1937 0060); South Dakota School of Mines and Technology, Department of Physics, Rapid City, USA (GRID:grid.263790.9) (ISNI:0000 0001 0704 1727) 
 The Pennsylvania State University, Department of Materials Science and Engineering, University Park, USA (GRID:grid.29857.31) (ISNI:0000 0001 2097 4281) 
 University of Nebraska, Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, Lincoln, USA (GRID:grid.24434.35) (ISNI:0000 0004 1937 0060) 
 University of California, Department of Materials Science and Engineering, Irvine, USA (GRID:grid.266093.8) (ISNI:0000 0001 0668 7243) 
 Norwegian University of Science and Technology, Department of Electronic Systems, Trondheim, Norway (GRID:grid.5947.f) (ISNI:0000 0001 1516 2393) 
 University of California, Department of Materials Science and Engineering, Irvine, USA (GRID:grid.266093.8) (ISNI:0000 0001 0668 7243); University of California, Department of Physics and Astronomy, Irvine, USA (GRID:grid.266093.8) (ISNI:0000 0001 0668 7243); University of California, Irvine Materials Research Institute, Irvine, USA (GRID:grid.266093.8) (ISNI:0000 0001 0668 7243) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2600516385
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.