It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Since its discovery, plastic has been a part of human life and is widely employed in our daily lives. Excessive use of plastic has raised pollution rates around the world, with plastic ending up in landfills or the sea, posing a threat to both terrestrial and aquatic life. Considering this problem, the widespread use of polyurethanes (PUs) in many industries has resulted in unavoidable PUs pollution in everyday life. A reaction involving prepolymer, isocyanate, and polyol can be used to make PUs. Petroleum-based polyol and vegetable oil-based polyol are the two types of polyols available. Isocyanate will become the hard domain of the polymer in the PUs polymer chain, while polyol will become the soft domain. Polylactic acid-diol is the prepolymer used to make PU (PLA-diol). PLA-diol was previously made using a traditional heating approach, which takes a long time. To overcome this traditional method, microwave-assisted synthesis is proposed to synthesize the PLA-diol. The synthesis process involved synthesizing PLA-diol at different microwave power (450W – 900W) and at different reaction time (1 hour – 2 hours). The peak of hydroxyl group in synthesized PLA-diol was characterized via the Fourier Transform Infrared Spectroscopy (FTIR) characterization to determine the functional groups of PLA-diol and gel permeation chromatography (GPC) characterization was done to determine the molecular weight of PLA-diol. The resulting PLA-diol will then be used to synthesis biodegradable PUs in the subsequence study.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Selangor, Malaysia
2 Advance Oleochemical Technology Department, Malaysia Palm Oil Berhad, 8, Persiaran Institusi, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia.
3 International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Selangor, Malaysia