Full text

Turn on search term navigation

© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recently, remotely sensed measurements of the near-infrared reflectance (NIRv) of vegetation, the fluorescence correction vegetation index (FCVI), and radiance (NIRvrad) of vegetation have emerged as indicators of vegetation structure and function with potential to enhance or improve upon commonly used indicators, such as the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). The applicability of these remotely sensed indices to tropical forests, key ecosystems for global carbon cycling and biodiversity, has been limited. In particular, fine-scale spatial and temporal heterogeneity of structure and physiology may contribute to variation in these indices and the properties that are presumed to be tracked by them, such as gross primary productivity (GPP) and absorbed photosynthetically active radiation (APAR). In this study, fine-scale (approx. 15 cm) tropical forest heterogeneity represented by NIRv, FCVI, and NIRvrad and by lidar-derived height is investigated and compared to NIRv and EVI using unoccupied aerial system (UAS)-based hyperspectral and lidar sensors. By exploiting near-infrared signals, NIRv, FCVI, and NIRvrad captured the greatest spatiotemporal variability, followed by the enhanced vegetation index (EVI) and then the normalized difference vegetation index (NDVI). Wavelet analyses showed the dominant spatial scale of variability of all indicators was driven by tree clusters and larger-than-tree-crown size gaps rather than individual tree crowns. NIRv, FCVI, NIRvrad, and EVI captured variability at smaller spatial scales ( 50 m) than NDVI ( 90 m) and the lidar-based surface model ( 70 m). We show that spatial and temporal patterns of NIRv and FCVI were virtually identical for a dense green canopy, confirming predictions in earlier studies. Furthermore, we show that NIRvrad, which does not require separate irradiance measurements, correlated more strongly with GPP and PAR than did other indicators. NIRv, FCVI, and NIRvrad, which are related to canopy structure and the radiation regime of vegetation canopies, are promising tools to improve understanding of tropical forest canopy structure and function.

Details

Title
Unveiling spatial and temporal heterogeneity of a tropical forest canopy using high-resolution NIRv, FCVI, and NIRvrad from UAS observations
Author
Merrick, Trina 1 ; Pau, Stephanie 2 ; Detto, Matteo 3 ; Broadbent, Eben N 4 ; Bohlman, Stephanie A 5 ; Still, Christopher J 6   VIAFID ORCID Logo  ; Angelica M Almeyda Zambrano 7 

 Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA 
 Department of Geography, Florida State University, 113 Collegiate Loop, Tallahassee, FL 32306, USA 
 Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancón, Panama; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA 
 Spatial Ecology and Conservation Lab, School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32608, USA 
 Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancón, Panama; School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32608, USA 
 Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA 
 Spatial Ecology and Conservation Lab, Center for Latin American Studies, University of Florida, Gainesville, FL 32608, USA 
Pages
6077-6091
Publication year
2021
Publication date
2021
Publisher
Copernicus GmbH
ISSN
17264170
e-ISSN
17264189
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2601908977
Copyright
© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.