Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Thick airfoils are conventionally adopted in the blade root region of a wind turbine to ensure structural safety under extreme conditions, despite the resulting power loss. To prevent this loss, a passive flow control device known as a vortex generator (VG) is installed at the starting point of the stall to control the flow field near the wall of the suction surface. In this study, we used computational fluid dynamics (CFD) to investigate the aerodynamic characteristics induced as a result of the shape and layout of the VG on a multi-MW wind turbine blade. The separated and vortical flow behavior on the suction surface of the wind turbine blade equipped with VGs was captured by the Reynolds-averaged Navier–Stokes (RANS) steady-flow simulation. The parametric sensitivity study of the VG shape parameters such as the chord-wise length, height, and interval of the fair of VGs was conducted using thick DU airfoil on the blade inboard area. Based on these results, the response surface method (RSM) was used to investigate the influence of the design parameters of the VG. Based on the CFD results, the VG design parameters were selected by considering the lift coefficient and vorticity above the trailing edge. The maximum vorticity from the trailing edge of the selected VG and the lift coefficient were 55.7% and 0.42% higher, respectively, than the average. The selected VG design and layout were adopted for a multi-MW wind turbine and reduced stall occurrence in the blade root area, as predicted by the simulation results. The VG improved the aerodynamic performance of the multi-MW wind turbine by 2.8% at the rated wind speed.

Details

Title
CFD-Based In-Depth Investigation of the Effects of the Shape and Layout of a Vortex Generator on the Aerodynamic Performance of a Multi-MW Wind Turbine
Author
Moon, Hyeon-Gi 1 ; Park, Sunho 2 ; Ha, Kwangtae 3   VIAFID ORCID Logo  ; Jae-Ho, Jeong 1 

 Mechanical Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13306, Korea; [email protected] 
 Unison Wind Power R&D Centre, 26-41, Gaeongbuk-ro, Yuseong-gu, Daejeon 34113, Korea; [email protected] 
 Department of Floating Wind Power, Ulsan University, 93, Daehak-ro, Nam-gu, Ulsan 44610, Korea 
First page
10764
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2602007979
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.