Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The recent decade has witnessed a tremendous growth of Internet traffic, which is expected to continue climbing for the foreseeable future. As a new paradigm, Spectrum-sliced Elastic Optical Path (SLICE) networks promise abundant (elastic) bandwidth to address the traffic explosion, while bearing other inherent advantages including enhanced signal quality and extended reachability. The fundamental problem in SLICE networks is to route each traffic demand along a lightpath with continuously and consecutively available sub-carriers, which is known as the Routing and Spectrum Allocation (RSA) problem. Given its NP-Hardness, the solutions to the RSA problem can be classified into two categories: optimal solutions using link-based, path-based, and channel-based Integer Linear Programming (ILP) models, which require extensive computational time; and sub-optimal heuristic and meta-heuristic algorithms, which have no guarantee on the solution quality. In this work, inspired by a channel-based ILP model, we propose a novel primal-dual framework to address the RSA problem, which can obtain a near-optimal solution with guaranteed per-instance closeness to the optimal solution.

Details

Title
Routing and Spectrum Allocation in Spectrum-Sliced Elastic Optical Path Networks: A Primal-Dual Framework
Author
Wang, Yang 1 ; Li, Chaoyang 2 ; Hu, Qian 1 ; Jabree Flor 1 ; Jalalitabar, Maryam 3 

 Department of Math and Computer Science, La Salle University, Philadelphia, PA 19141, USA; [email protected] (Q.H.); [email protected] (J.F.) 
 School of Computer Science and Engineering, Huizhou University, Huizhou 516007, China 
 Department of Computer Science, California State University, Northridge, Los Angeles, CA 91330, USA; [email protected] 
First page
2809
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2602036572
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.