Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Wind power is a substantial resource to assist global efforts on the decarbonization of energy. The drive to increase capacity has led to ever-increasing blade tip heights and lightweight, slender towers. These structures are subject to a variety of environmental loads that give rise to vibrations with potentially catastrophic consequences, making the mitigation of the tower’s structural vibrations an important factor for low maintenance requirements and reduced damage risk. Recent advances in the most important vibration control methods for wind turbine towers are presented in this paper, exploring the impact of the installation environment harshness on the performance of state-of-the-art devices. An overview of the typical structural characteristics of a modern wind turbine tower is followed by a discussion of typical damages and their link to known collapse cases. Furthermore, the vibration properties of towers in harsh multi-hazard environments are presented and the typical design options are discussed. A comprehensive review of the most promising passive, active, and semi-active vibration control methods is conducted, focusing on recent advances around novel concepts and analyses of their performance under multiple environmental loads, including wind, waves, currents, and seismic excitations. The review highlights the benefits of installing structural systems in reducing the vibrational load of towers and therefore increasing their structural reliability and resilience to extreme events. It is also found that the stochastic nature of the typical tower loads remains a key issue for the design and the performance of the state-of-the-art vibration control methods.

Details

Title
Recent Advances in Vibration Control Methods for Wind Turbine Towers
Author
Malliotakis, Georgios 1   VIAFID ORCID Logo  ; Alevras, Panagiotis 1 ; Baniotopoulos, Charalampos 2   VIAFID ORCID Logo 

 Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK; [email protected] 
 Department of Civil Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK; [email protected] 
First page
7536
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2602040240
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.