Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, the optimization and modeling of microwave-assisted extraction (MAE) of water-soluble curcuminoids prepared using novel steviol glycosides (SGs) was carried out using four independent process variables at varying levels—X1: microwave power (50–200 W), X2: stevioside concentration (50–200 mg/mL), X3: curcumin concentration (20–200 mg/mL), and X4: time (1–10 min)—in response surface methodology configuration. Moreover, the effects of stevioside, as the most cost-effective natural solubilizer, were also evaluated. The water solubility of curcuminoids increased from 11 to 1320 mg/L with the addition of stevioside as a natural solubilizer. Moreover, microwave heating synergistically with stevioside addition significantly (p < 0.05) increased the solubility up to 5400 mg/L. Based on the results, the optimum conditions providing the maximum solubilization of 16,700 mg/L were 189 W microwave power, 195 g/L stevioside concentration, 183 g/L curcuminoid concentration, and 9 min of incubation time. Moreover, MAE of curcuminoids using SGs might render a significant advantage for its wide-scale application to solubilizing the multitude of insoluble functional flavonoids in fruits, plants, and food materials.

Details

Title
Optimization of Microwave-Assisted Green Method for Enhanced Solubilization of Water-Soluble Curcuminoids Prepared Using Steviol Glycosides
Author
Jin-A, Ko 1 ; Young-Bae, Ryu 2 ; Woo-Song, Lee 2 ; Ameer, Kashif 3   VIAFID ORCID Logo  ; Young-Min, Kim 1 

 Department of Food Science and Technology, Chonnam National University, Gwangju 61186, Korea; [email protected] 
 Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si 56212, Korea; [email protected] (Y.-B.R.); [email protected] (W.-S.L.) 
 Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan 
First page
2803
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2602056681
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.