Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Max-plus algebra is the similarity of the classical linear algebra with two binary operations, maximum and addition. The notation Ax = Bx, where A, B are given (interval) matrices, represents (interval) two-sided (max, plus)-linear system. For the solvability of Ax = Bx, there are some pseudopolynomial algorithms, but a polynomial algorithm is still waiting for an appearance. The paper deals with the analysis of solvability of two-sided (max, plus)-linear equations with inexact (interval) data. The purpose of the paper is to get efficient necessary and sufficient conditions for solvability of the interval systems using the property of the solution set of the non-interval system Ax = Bx. The main contribution of the paper is a transformation of weak versions of solvability to either subeigenvector problems or to non-interval two-sided (max, plus)-linear systems and obtaining the equivalent polynomially checked conditions for the strong versions of solvability.

Details

Title
Polynomial and Pseudopolynomial Procedures for Solving Interval Two-Sided (Max, Plus)-Linear Systems
Author
Myšková, Helena; Plavka, Ján  VIAFID ORCID Logo 
First page
2951
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2602102188
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.