Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A novel magnetic solid phase extraction based on mercaptophenylboronic acid (MPBA)-functionalized Fe3O4-NH2@Au nanomaterial (Fe3O4-NH2@Au-MPBA) was developed for selective separation and enrichment of catecholamines (including dopamine, norepinephrine and adrenaline). Fe3O4-NH2@Au-MPBA nanoparticles were achieved by self-assembly-anchoring MPBA molecules on the surface of Fe3O4-NH2@Au nanocomposites, which were synthesized via a facial ultrasonic auxiliary in situ reduction process. The interaction between cis-diol from catecholamines and boronic acid was reversible and could be flexibly controlled by adjusting pH value. The catecholamines could be quickly adsorbed by Fe3O4-NH2@Au-MPBA in weak alkaline solution (pH 8.0–9.0) and subsequently released in acid solution (pH 1.0–2.0). The process of adsorption and dissociation was very fast. Furthermore, the three catecholamines could be detected in urine from children by high performance liquid chromatography (HPLC) with electrochemical detector. Under optimal conditions, norepinephrine (NE), epinephrine (EP) and dopamine (DA) were separated very well from internal standard and exhibited a good linearity in the range of 2.5–500.0 ng mL−1, with correlation coefficients of r2 > 0.9907. Limits of detection (LOD) (signal to noise = 3) were 0.39, 0.27 and 0.60 ng mL−1 for NE, EP and DA, respectively. Recoveries for the spiked catecholamines were in the range of 85.4–105.2% with the relative standard deviation (RSD) < 11.5%.

Details

Title
Selective Separation and Analysis of Catecholamines in Urine Based on Magnetic Solid Phase Extraction by Mercaptophenylboronic Acid Functionalized Fe3O4-NH2@Au Magnetic Nanoparticles Coupled with HPLC
Author
Han, Qing 1 ; Wu, Xiaoxiao 1 ; Cao, Yi 2 ; Zhang, Hua 2 ; Zhao, Yuqin 3 ; Kang, Xuejun 1 ; Zhu, Huaiyuan 2 

 Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; [email protected] (Q.H.); [email protected] (X.W.) 
 China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, China; [email protected] (Y.C.); [email protected] (H.Z.) 
 Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing 210001, China; [email protected] 
First page
196
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
22978739
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2602171850
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.