Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Acupuncture is one of the oldest traditional medical treatments in Asian countries. However, the scientific explanation regarding the therapeutic effect of acupuncture is still unknown. The much-discussed hypothesis it that acupuncture’s effects are mediated via autonomic neural networks; nevertheless, dynamic brain activity involved in the acupuncture response has still not been elicited. In this work, we hypothesized that there exists a lower-dimensional subspace of dynamic brain activity across subjects, underpinning the brain’s response to manual acupuncture stimulation. To this end, we employed a variational auto-encoder to probe the latent variables from multichannel EEG signals associated with acupuncture stimulation at the ST36 acupoint. The experimental results demonstrate that manual acupuncture stimuli can reduce the dimensionality of brain activity, which results from the enhancement of oscillatory activity in the delta and alpha frequency bands induced by acupuncture. Moreover, it was found that large-scale brain activity could be constrained within a low-dimensional neural subspace, which is spanned by the “acupuncture mode”. In each neural subspace, the steady dynamics of the brain in response to acupuncture stimuli converge to topologically similar elliptic-shaped attractors across different subjects. The attractor morphology is closely related to the frequency of the acupuncture stimulation. These results shed light on probing the large-scale brain response to manual acupuncture stimuli.

Details

Title
Low-Dimensional Dynamics of Brain Activity Associated with Manual Acupuncture in Healthy Subjects
Author
Guo, Xinmeng 1 ; Wang, Jiang 2 

 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; [email protected]; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China 
 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; [email protected] 
First page
7432
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2602185768
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.