Full text

Turn on search term navigation

Copyright © 2021 Zhichao Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

The license plate recognition is an important part of the intelligent traffic management system, and the application of deep learning to the license plate recognition system can effectively improve the speed and accuracy of recognition. Aiming at the problems of traditional license plate recognition algorithms such as the low accuracy, slow speed, and the recognition rate being easily affected by the environment, a Convolutional Neural Network- (CNN-) based license plate recognition algorithm-Fast-LPRNet is proposed. This algorithm uses the nonsegment recognition method, removes the fully connected layer, and reduces the number of parameters. The algorithm—which has strong generalization ability, scalability, and robustness—performs license plate recognition on the FPGA hardware. Increaseing the depth of network on the basis of the Fast-LPRNet structure, the dataset of Chinese City Parking Dataset (CCPD) can be recognized with an accuracy beyond 90%. The experimental results show that the license plate recognition algorithm has high recognition accuracy, strong generalization ability, and good robustness.

Details

Title
Research and Implementation of Fast-LPRNet Algorithm for License Plate Recognition
Author
Wang, Zhichao 1   VIAFID ORCID Logo  ; Jiang, Yu 1 ; Liu, Jiaxin 1 ; Gong, Siyu 1 ; Yao, Jian 1 ; Jiang, Feng 1   VIAFID ORCID Logo 

 School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China 
Editor
Iouliia Skliarova
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
20900147
e-ISSN
20900155
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2603602615
Copyright
Copyright © 2021 Zhichao Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/