It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Two-dimensional large-signal and noise simulations are used to study the terahertz (THz) performance of Gallium Nitride (GaN) avalanche transit time source (ATT) source. A comprehensive model of parasitic series resistance has been developed by which the effect of series resistance on the large-signal and noise performance of the 1.0 THz GaN ATT source has been investigated; the proposed model is based on time varying depletion width modulation under large-signal oscillating condition. Significant amount of deterioration in power output and efficiency have been observed due to the existence of series resistance of the device. On the other hand, the realization of the optimized structure and doping profile as per the theoretical design is a tricky job by considering the state-of-the-art GaN fabrication technology. Especially, achieving the absolute values of epitaxial doping densities is almost an unrealistic task. Therefore, it is very important to acquire the knowledge about how much extent the power output, series resistance and noise measure of the source are affected due to the change in doping level of both n- and p-layers. In the present study, the sensitivities of the above-mentioned parameters with respect to the change in the doping densities of n- and p-layers have been investigated.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Mines and Metallurgy, Kazi Nazrul University, Asansol, Burdwan, West Bengal - 713340, India
2 Department of Electronics and Communication Engineering, Cooch Behar Government Engineering College, Cooch Behar, West Bengal - 736170, India
3 R.P.B.M. Jiaganj College of Engineering and Technology, Murshidabad, India
4 Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8011, Japan
5 Department of Electronics and Communication Engineering, National Institute of Technology, Chaltlang, Aizawl, Mizoram 796012, India