It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Development of tolerant variety can be conducted in the targeted area. It will increase efficiency in producing the acid-tolerant lines. However, the availability of diversity is key in selection. Multiple crosses or crosses between F1 hybrids can be one approach in creating high population diversity. Therefore, the development and selection of offspring of the selfing 1 generation from a cross of two hybrids can be a solution in producing tolerant lines. This study aimed to select multiple-cross maize lines in the generation S1 in an acidic environment. The research was carried out from August to November 2019 at the Maros Cereal Research Center, South Sulawesi. This study was designed with an Augmented Design as an experimental design and a randomized block design as an environmental design. The lines used consisted of 100 S1 lines from crosses of NK7328/HJ28 that did not repeat and six comparison varieties, namely NK7328, HJ28, Sukmaraga, Srikandi Kuning, Bima-9, and Piooner 36 repeated in each block. Based on the results of this study, the evaluation of maize S1 lines under acid soil showed a good variability, especially on generative traits. The ear weight is the best secondary character supported the Grain weight per Ear as the main character. The result of selection showed that 20 S1 lines recommended to selfing cross for continued on the next generation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Assessment Institute for Agriculture Technology of Gorontalo, Gorontalo, Indonesia
2 Department of Agronomy, Faculty of Agriculture, Hasanuddin University, Perintis Kemerdekaan Street Km 10, Makassar, South Sulawesi, 90245, Indonesia
3 Study Program of Agrotechnology, Graduate School of Hasanuddin University, Makassar, South Sulawesi, 90245, Indonesia