It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Recycled powder (RP) is produced as a by-product during the process of recycling construction and demolition (C&D) wastes, presenting a low additional value. Using RP-based solidifying material can not only improve its utilization efficiency, but also reduce the cost of commercial solidifying materials. To date, this is the best solidifying material utilized to dispose the original waterworks sludge (OWS) with high moisture contents (60%), and the product could be used to fabricate non-fired bricks. This has become a new environment-friendly technology of “using waste to treat waste”. In this paper, the influence of different particle sizes and dosages of RP on the prepared solidifying material was studied. Besides, unconfined compression strength (UCS), volume stability, chemical composition, and heat of hydration, pore structure of the solidifying material were characterized. Then, non-fired bricks were prepared by using the solidifying material, recycled aggregate, and original waterworks sludge. The UCS and softing coefficient (SC) of the non-fired bricks were evaluated. As a result, the 28-day UCS of the solidifying material with optimal (M30) was 35.40 MPa, which could reach 84.37% of Portland cement (PC). The addition of RP increased the volume stability of the solidifying material. The addition of a large amount of RP reduced the heat flux and cumulative heat release of the solidifying material, while its porosity increased. The UCS of non-fired brick (NF20) in 28 days was 15.19 MPa and the SC after 28 days was 78.35%. In conclusion, the preparation of solidifying material using RP could be a promising approach and has a great potential in disposal of original waterworks sludge.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer