Full Text

Turn on search term navigation

© 2021 Song et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This research proposes a new multi-membrane search algorithm (MSA) based on cell biological behavior. Cell secretion protein behavior and cell division and fusion strategy are the main inspirations for the algorithm. In order to verify the performance of the algorithm, we used 19 benchmark functions to compare the MSA test results with MVO, GWO, MFO and ALO. The number of iterations of each algorithm on each benchmark function is 100, the population number is 10, and the running is repeated 50 times, and the average and standard deviation of the results are recorded. Tests show that the MSA is competitive in unimodal benchmark functions and multi-modal benchmark functions, and the results in composite benchmark functions are all superior to MVO, MFO, ALO, and GWO algorithms. This paper also uses MSA to solve two classic engineering problems: welded beam design and pressure vessel design. The result of welded beam design is 1.7252, and the result of pressure vessel design is 5887.7052, which is better than other comparison algorithms. Statistical experiments show that MSA is a high-performance algorithm that is competitive in unimodal and multimodal functions, and its performance in compound functions is significantly better than MVO, MFO, ALO, and GWO algorithms.

Details

Title
Multi-membrane search algorithm
Author
Song, Qi; Huang, Yourui; Lai, Wenhao; Han, Tao; XU, Shanyong; Xue Rong
First page
e0260512
Section
Research Article
Publication year
2021
Publication date
Dec 2021
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2607270282
Copyright
© 2021 Song et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.