Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

For autonomous driving research, using a scaled vehicle platform is a viable alternative compared to a full-scale vehicle. However, using embedded solutions such as small robotic platforms with differential driving or radio-controlled (RC) car-based platforms can be limiting on, for example, sensor package restrictions or computing challenges. Furthermore, for a given controller, specialized expertise and abilities are necessary. To address such problems, this paper proposes a feasible solution, the Ridon vehicle, which is a spacious ride-on automobile with high-driving electric power and a custom-designed drive-by-wire system powered by a full-scale machine-learning-ready computer. The major objective of this paper is to provide a thorough and appropriate method for constructing a cost-effective platform with a drive-by-wire system and sensor packages so that machine-learning-based algorithms can be tested and deployed on a scaled vehicle. The proposed platform employs a modular and hierarchical software architecture, with microcontroller programs handling the low-level motor controls and a graphics processing unit (GPU)-powered laptop computer processing the higher and more sophisticated algorithms. The Ridon vehicle platform is validated by employing it in a deep-learning-based behavioral cloning study. The suggested platform’s affordability and adaptability would benefit broader research and the education community.

Details

Title
Ridon Vehicle: Drive-by-Wire System for Scaled Vehicle Platform and Its Application on Behavior Cloning
Author
Khalil, Aws 1   VIAFID ORCID Logo  ; Abdelhamed, Ahmed 2 ; Tewolde, Girma 2 ; Kwon, Jaerock 1   VIAFID ORCID Logo 

 Department of Electrical and Computer Engineering, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128-2406, USA; [email protected] 
 Department of Electrical and Computer Engineering, Kettering University, 1700 University Avenue, Flint, MI 48504-6214, USA; [email protected] (A.A.); [email protected] (G.T.) 
First page
8039
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2608133204
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.