Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The standards for emissions from diesel engines are becoming more stringent and accurate emission modeling is crucial in order to control the engine to meet these standards. Soot emissions are formed through a complex process and are challenging to model. A comprehensive analysis of diesel engine soot emissions modeling for control applications is presented in this paper. Physical, black-box, and gray-box models are developed for soot emissions prediction. Additionally, different feature sets based on the least absolute shrinkage and selection operator (LASSO) feature selection method and physical knowledge are examined to develop computationally efficient soot models with good precision. The physical model is a virtual engine modeled in GT-Power software that is parameterized using a portion of experimental data. Different machine learning methods, including Regression Tree (RT), Ensemble of Regression Trees (ERT), Support Vector Machines (SVM), Gaussian Process Regression (GPR), Artificial Neural Network (ANN), and Bayesian Neural Network (BNN) are used to develop the black-box models. The gray-box models include a combination of the physical and black-box models. A total of five feature sets and eight different machine learning methods are tested. An analysis of the accuracy, training time and test time of the models is performed using the K-means clustering algorithm. It provides a systematic way for categorizing the feature sets and methods based on their performance and selecting the best method for a specific application. According to the analysis, the black-box model consisting of GPR and feature selection by LASSO shows the best performance with test R2 of 0.96. The best gray-box model consists of SVM-based method with physical insight feature set along with LASSO for feature selection with test R2 of 0.97.

Details

Title
Hybrid Machine Learning Approaches and a Systematic Model Selection Process for Predicting Soot Emissions in Compression Ignition Engines
Author
Shahpouri, Saeid 1   VIAFID ORCID Logo  ; Norouzi, Armin 1   VIAFID ORCID Logo  ; Hayduk, Christopher 2 ; Rezaei, Reza 2 ; Shahbakhti, Mahdi 1   VIAFID ORCID Logo  ; Koch, Charles Robert 1   VIAFID ORCID Logo 

 Mechanical Engineering Department, University of Alberta, Edmonton, AB T6G 1H9, Canada; [email protected] (S.S.); [email protected] (A.N.); [email protected] (C.R.K.) 
 IAV GmbH, 38518 Gifhorn, Germany; [email protected] (C.H.); [email protected] (R.R.) 
First page
7865
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2608133907
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.