Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Wireless power transfer (WPT) is an essential enabler for novel sensor networks such as the wireless powered communication network (WPCN). The efficiency of an energy rectifier is dependent on both input power and loading condition. In this work, to maximize the rectifier efficiency, we present a low-complexity numerical method based on an analytical rectifier model to calculate the optimal load for different rectifier topologies, including half-wave and voltage-multipliers, without needing time-consuming simulations. The method is based on a simplified analytical rectifier model based on the diode equivalent circuit including parasitic parameters. Furthermore, by using Lambert-W function and the perturbation method, closed-form solutions are given for low-input power cases. The method is validated by means of both simulations and measurements. Extensive transient simulation results using different diodes (Skyworks SMS7630 and Avago HSMS285x) and frequency bands (400 MHz, 900 MHz, and 2.4

GHz) are provided for validation of the method. A 400 MHz 1- and 2-stage voltage multiplier are designed and fabricated, and measurements are conducted. Different input signals are used when validating the proposed methods, including the single sinewave signal and the multisine signal. The proposed numerical method shows excellent accuracy with both signal types, as long as the output voltage ripple is sufficiently low.

Details

Title
Analytical Optimal Load Calculation of RF Energy Rectifiers Based on a Simplified Rectifying Model
Author
Yao, Lichen 1   VIAFID ORCID Logo  ; Dolmans, Guido 1   VIAFID ORCID Logo  ; Romme, Jac 2   VIAFID ORCID Logo 

 Electronics System, Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; [email protected]; Holst-Centre, IMEC-NL, 5656 AE Eindhoven, The Netherlands; [email protected] 
 Holst-Centre, IMEC-NL, 5656 AE Eindhoven, The Netherlands; [email protected] 
First page
8038
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2608140882
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.