It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We present an unsupervised domain adaptation (UDA) method for a lip-reading model that is an image-based speech recognition model. Most of conventional UDA methods cannot be applied when the adaptation data consists of an unknown class, such as out-of-vocabulary words. In this paper, we propose a cross-modal knowledge distillation (KD)-based domain adaptation method, where we use the intermediate layer output in the audio-based speech recognition model as a teacher for the unlabeled adaptation data. Because the audio signal contains more information for recognizing speech than lip images, the knowledge of the audio-based model can be used as a powerful teacher in cases where the unlabeled adaptation data consists of audio-visual parallel data. In addition, because the proposed intermediate-layer-based KD can express the teacher as the sub-class (sub-word)-level representation, this method allows us to use the data of unknown classes for the adaptation. Through experiments on an image-based word recognition task, we demonstrate that the proposed approach can not only improve the UDA performance but can also use the unknown-class adaptation data.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Kobe University, Graduate School of System Informatics, Kobe, Japan (GRID:grid.31432.37) (ISNI:0000 0001 1092 3077)
2 Mitsubishi Electric Corporation, Information Technology R&D Center, Ofuna, Japan (GRID:grid.462605.3) (ISNI:0000 0001 0662 3151)