It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Long short-term memory (LSTM) models provide high predictive performance through their ability to recognize longer sequences of time series data. More recently, bidirectional deep learning models (BiLSTM) have extended the LSTM capabilities by training the input data twice in forward and backward directions. In this paper, BiLSTM short term traffic forecasting models have been developed and evaluated using data from a calibrated micro-simulation model for a congested freeway in Melbourne, Australia. The simulation model was extensively calibrated and validated to a high degree of accuracy using field data collected from 55 detectors on the freeway. The base year simulation model was then used to generate loop detector data including speed, flow and occupancy which were used to develop and compare a number of LSTM models for short-term traffic prediction up to 60 min into the future. The modelling results showed that BiLSTM outperformed other predictive models for multiple prediction horizons for base year conditions. The simulation model was then adapted for future year scenarios where the traffic demand was increased by 25–100 percent to reflect potential future increases in traffic demands. The results showed superior performance of BiLSTM for multiple prediction horizons for all traffic variables.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Swinburne University of Technology, Department of Civil and Construction Engineering, Melbourne, Australia (GRID:grid.1027.4) (ISNI:0000 0004 0409 2862)
2 Swinburne University of Technology, Department of Computer Science and Software Engineering, Melbourne, Australia (GRID:grid.1027.4) (ISNI:0000 0004 0409 2862)