It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The available treatment options include corneal transplantation for significant corneal defects and opacity. However, shortage of donor corneas and safety issues in performing corneal transplantation are the main limitations. Accordingly, we adopted the injectable in situ-forming hydrogels of collagen type I crosslinked via multifunctional polyethylene glycol (PEG)-N-hydroxysuccinimide (NHS) for treatment and evaluated in vivo biocompatibility. The New Zealand White rabbits (N = 20) were randomly grouped into the keratectomy-only and keratectomy with PEG-collagen hydrogel-treated groups. Samples were processed for immunohistochemical evaluation. In both clinical and histologic observations, epithelial cells were able to migrate and form multilayers over the PEG-collagen hydrogels at the site of the corneal stromal defect. There was no evidence of inflammatory or immunological reactions or increased IOP for PEG-collagen hydrogel-treated corneas during the four weeks of observation. Immunohistochemistry revealed the presence of α-smooth muscle actin (α-SMA) in the superior corneal stroma of the keratectomy-only group (indicative of fibrotic healing), whereas low stromal α-SMA expression was detected in the keratectomy with PEG-collagen hydrogel-treated group. Taken together, we suggest that PEG-collagen may be used as a safe and effective alternative in treating corneal defect in clinical setting.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 The Catholic University of Korea, Department of Pediatrics, Incheon St. Mary’s Hospital, College of Medicine, Incheon, Republic of Korea (GRID:grid.411947.e) (ISNI:0000 0004 0470 4224)
2 The Catholic University of Korea, Department of Ophthalmology, Yeouido St. Mary’s Hospital, College of Medicine, Seoul, Republic of Korea (GRID:grid.411947.e) (ISNI:0000 0004 0470 4224)
3 Gachon University, Chemical and Biological Engineering, Seongnam‐si, Republic of Korea (GRID:grid.256155.0) (ISNI:0000 0004 0647 2973)
4 Yonsei University, Department of Chemical and Biomolecular Engineering, Seoul, Republic of Korea (GRID:grid.15444.30) (ISNI:0000 0004 0470 5454)
5 Ophthalmology, Byers Eye Institute at Stanford University School of Medicine, Palo Alto, USA (GRID:grid.168010.e) (ISNI:0000000419368956)