It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Highlights
A confined thermal expansion strategy to fabricate liquid metal (LM)-based monoliths with continuous LM network at ultra-low content.
The results show a strong integration advantage of LM-based monoliths in density, mechanical strength, electromagnetic interference shielding effectiveness, and near field shielding effectiveness, as well as multi-functions such as magnetic actuation.
Liquid metal (LM) has become an emerging material paradigm in the electromagnetic interference shielding field owing to its excellent electrical conductivity. However, the processing of lightweight bulk LM composites with finite package without leakage is still a great challenge, due to high surface tension and pump-out issues of LM. Here, a novel confined thermal expansion strategy based on expandable microsphere (EM) is proposed to develop a new class of LM-based monoliths with 3D continuous conductive network. The EM/LM monolith (EM/LMm) presents outstanding performance of lightweight like metallic aerogel (0.104 g cm−1), high strength (3.43 MPa), super elasticity (90% strain), as well as excellent tailor ability and recyclability, rely on its unique gas-filled closed-cellular structure and refined LM network. Moreover, the assembled highly conducting EM/LMm exhibits a recorded shielding effectiveness (98.7 dB) over a broad frequency range of 8.2–40 GHz among reported LM-based composites at an ultra-low content of LM, and demonstrates excellent electromagnetic sealing capacity in practical electronics. The ternary EM/LM/Ni monoliths fabricated by the same approach could be promising universal design principles for multifunctional LM composites, and applicable in magnetic responsive actuator.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Chinese Academy of Sciences, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Shenzhen, People’s Republic of China (GRID:grid.9227.e) (ISNI:0000000119573309)
2 Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, USA (GRID:grid.213917.f) (ISNI:0000 0001 2097 4943)