It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The agri-food supply chain consists of activities in “farm-to-fork” order, including agriculture (i.e., land cultivation and crop production), production processes, packaging, warehousing systems, distribution, transportation, and marketing. Data analytics hold the key to ensuring future food security, food safety, and ecological sustainability. While emerging ‘smart’ technologies such as the internet of things, machine learning, and cloud computing can change production management practices. The current study presents a systematic review of machine learning (ML) applications in the agri-food supply chain. This framework identifies the role of ML algorithms in providing real-time analytical insights to assist proactive data-driven decision-making processes in the agri-food supply chain. It also guides researchers, practitioners, and policymakers on successful management to increase the productivity and sustainability of agri-food.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Agro-industrial Technology, Faculty of Agricultural Technology, Universitas Brawijaya, Malang Indonesia
2 Department of Socio-Economics, Faculty of Agriculture, Universitas Brawijaya, Malang Indonesia