It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this paper, the hydrogen diffusion behavior and hydrogen induced delayed fracture (HIDF) of Q-P980 (Q-P: Quenching and Partitioning) and MS980 (MS: Martensitic steel) steels were investigated using hydrogen penetration, slow strain rate tensile (SSRT) tests, thermal desorption spectroscopy (TDS) tests, fracture analysis, and microstructural examination in this paper. The austenite in Q-P980 is massive retained-austenite (RA) with low stability. The TRIP (Transformation Induced Plasticity) effect will occur in the process of strain and change into high carbon martensite. HIDF is caused by a substantial amount of surplus hydrogen being enriched at the border and flaws. The fracture has a broad cleavage surface and is a typical quasi-cleavage fracture. MS980 has been sufficiently tempered, resulting in a substantial quantity of distributed spherical cementite (150nm) precipitating around the lath martensite. This size and form of cementite may successfully trap hydrogen while maintaining the material’s mechanical characteristics. And tempering can effectively reduce the local stress level of steel, so MS980 has a very low HE susceptibility. HIDF is related to local stress and hydrogen accumulation. We suppose that Z is a constant and Z C is a critical value which associated to σ and C H (the local stress and local hydrogen concentration), rising as σ and C H rises. The atomic bonds at the crack tip, lattice position and the phase interface will fracture when Z C reaches a particular value Z. Tempering to minimize local stress and carbide precipitation to capture hydrogen are two strategies for reducing hydrogen embrittlement (HE) susceptibility, particularly for dislocation strengthened steel. Microalloying elements can generate precipitates that function as hydrogen traps and obstruct the HELP (Hydrogen Enhanced Localized Plasticity) process, lowering local stress and hydrogen accumulation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
2 Tangsteel, Hebei Iron and Steel Group, Tangshan 063016,Hebei, People’s Republic of China