It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The concept of “thermal inductance” expands the options of thermal circuits design. However, the inductive component is the only missing components in thermal circuits unlike their electromagnetic counterparts. Herein, we report an electrically controllable reverse heat flow, in which heat flows from a low-temperature side to a high-temperature side locally and temporarily in a single material by imposing thermal inertia and ac current. This effect can be regarded as an equivalent of the “thermoinductive” effect induced by the Peltier effect. We derive the exact solution indicating that this reverse heat flow occurs universally in solid-state systems, and that it is considerably enhanced by thermoelectric properties. A local cooling of 25 mK is demonstrated in (Bi,Sb)2Te3, which is explained by our exact solution. This effect can be directly applicable to the potential fabrication of “thermoinductor” in thermal circuits.
Most electrical components have an equivalent thermal-based counterpart however some devices, such as an inductor, can be more difficult to realise than others. Here, the authors demonstrate a Peltier-induced thermoinductive effect theoretically and experimentally demonstrating a circuit with an electrically controllable reverse heat flow.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer