This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
1. Introduction
As the global population ages, the incidence of diabetes is rapidly increasing during recent decades [1]. Diabetic foot ulcers (DFUs) are one of the most common and serious complications of diabetes. It was reported that the incidence of DFUs was up to 4% in diabetes [2]. The mechanism of DFUs remains unclear, and many factors contributed to the delayed healing of it, throwing a significant burden on patients with diabetic wound [3]. Early diagnosis and intervention of diabetic wound are important for reversing the poor prognosis of DFUs [4]. Unfortunately, few distinctive diagnostic biomarkers have been reported and demonstrated in diabetic wound. Thus, it is of great necessity to screen out the novel diagnostic biomarkers involved in the development of diabetic wound.
Fibroblasts are the essential cell type of skin, highly involved in the wound regeneration process, and acted in wound healing by interacting with other cells including keratinocytes and endothelial cells [5]. Exosomal miR-20b-5p derived from the high-glucose impaired fibroblast proliferation and differentiation, and delayed diabetic wound healing, suggesting the crucial role of fibroblasts in diabetic wound healing [6]. Furthermore, accumulative evidences have demonstrated the important role of genetic and epigenetic regulation in diabetic wound healing [7, 8].
In this study, we sought to identify the DEG modulation in diabetic fibroblasts by using bioinformatic methods. These findings may provide useful insights into understanding the molecular mechanisms of fibroblast pathologies in patients with DFUs.
2. Materials and Methods
2.1. DEG Identification
Microarray data of datasets comparing diabetes and the healthy controls were screened out from the Gene Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo). DEGs were performed by Limma in R, and
2.2. GO and KEGG Analyses
DAVID, an online bioinformatics tool, was used to perform GO and KEGG analyses. The top ten GO terms in biological process, molecular function, and cellular component and top five KEGG pathways were identified using the enrichment analysis. The result of enrichment analysis of hub genes was visualized with GOplot. DEGs were imported into Search Tool for the Retrieval of Interacting Genes (STRING) to construct the PPI network. Then, the TSV file of PPI network was imported into Cytoscape 3.7.2. The interactions between enriched KEGG pathways were calculated and visualized by Cytoscape 3.7.2.
2.3. Retrieval of KEGG Pathways Involved in Type 2 Diabetes and Calculation of Shared Pathways between Enriched Pathways and Type 2 Diabetes
miRWalk is an online bioinformatics atlas tool. In this study, the KEGG pathways involved in type 2 diabetes were retrieved from miRWalk. Then, the intersection of enriched KEGG pathways (
2.4. Targeted Transcript Factor Prediction
http://amp.pharm.mssm.edu/Enrichr/, the online predicting tool, was used to predict targeted transcript factors of enriched DEGs in the shared KEGG pathway. The prediction result was visualized by Gephi.
3. Results
3.1. DEG Identification
Datasets of GSE49566 and GSE78891 were obtained from GEO, which are the genes from human skin fibroblasts (Figure 1). There were three type 2 diabetes samples and six normal in GSE49566. There were six type 2 diabetes samples and five normal in GSE78891. 446 upregulated and 365 downregulated DEGs were identified in GSE49566. 242 upregulated and 248 downregulated DEGs were identified in GSE78891. Totally, there were 34 common DEGs identified. They were STMN2, HAPLN1, PTN, POSTN, MAPKAPK3, CDH11, TLE1, ZFAND5, C9orf3, EMX2, TIPRL, MEIS1, FZD6, SLC6A8, SLC7A1, TGFBR1, EMP1, HSPA2, PLCB1, KISS1, HOXD4, EYA2, SERP1, UBL3, GTF2H1, MYO1E, LMAN1, BMP2, CTNNAL1, SDC1, GUCA1A, SUB1, ZC3H15, and MBP (Figure 2).
[figures omitted; refer to PDF]
[figures omitted; refer to PDF]
3.2. GO and KEGG Pathway Enrichment Analysis
GO analysis results showed that common DEGs were significantly enriched in skeletal system development, cell surface, protein binding, mesenchymal differentiation, pathway-restricted SMAD protein phosphorylation, cardiac epithelial to mesenchymal transition, heart development, in utero embryonic development, regulation of transcription, DNA-templated, and skeletal system morphogenesis (Table 1). KEGG pathway analysis showed that the common DEGs were significantly enriched in a pathway in cancer, signaling pathways regulating pluripotency of stem cells, Hippo signaling pathway, MAPK signaling pathways, and basal cell carcinoma pathway (Table 2). The information and interaction of the GO and KEGG terms are demonstrated in Figure 3.
Table 1
Functional enrichment analysis of the DEGs. Top 10 terms were selected according to
Term | Name | Count | Genes | |
GO:0001501, BP | Skeletal system development | 5 | POSTN, BMP2, CDH11, TGFBR1, HAPLN1 | |
GO:0009986, CC | Cell surface | 5 | BMP2, FZD6, PTN, HSPA2, TGFBR1 | |
GO:0005515, MF | Protein binding | 18 | EMX2, POSTN, TLE1, EYA2, FZD6, ZFAND5, STMN2, HSPA2, SLC7A1, TGFBR1, KISS1, LMAN1, BMP2, MEIS1, MAPKAPK3, TIPRL, MBP, PLCB1 | |
GO:0048762, BP | Mesenchymal cell differentiation | 2 | BMP2, TGFBR1 | |
GO:0060389, BP | Pathway-restricted SMAD protein phosphorylation | 2 | BMP2, TGFBR1 | |
GO:0060317, BP | Cardiac epithelial to mesenchymal transition | 2 | BMP2, TGFBR1 | |
GO:0007507, BP | Heart development | 3 | BMP2, PTN, TGFBR1 | |
GO:0001701, BP | In utero embryonic development | 3 | BMP2, ZFAND5, TGFBR1 | |
GO:0006355, BP | Regulation of transcription, DNA-templated | 6 | EMX2, MEIS1, BMP2, TLE1, EYA2, TGFBR1 | |
GO:0048705, BP | Skeletal system morphogenesis | 2 | ZFAND5, TGFBR1 |
BP: biological process; MF: molecular function; CC: cellular component.
Table 2
Pathway enrichment analysis of the DEGs. Top 5 KEGG pathways were selected according to
Term | Name | Count | Genes | |
hsa05200 | Pathways in cancer | 4 | BMP2, FZD6, PLCB1, TGFBR1 | |
hsa04550 | Signaling pathways regulating pluripotency of stem cells | 3 | MEIS1, BMP2, FZD6 | |
hsa04390 | Hippo signaling pathway | 3 | BMP2, FZD6, TGFBR1 | |
hsa04010 | MAPK signaling pathway | 3 | MAPKAPK3, HSPA2, TGFBR1 | |
hsa05217 | Basal cell carcinoma | 2 | BMP2, FZD6 |
KEGG: Kyoto Encyclopedia of Genes and Genomes.
[figures omitted; refer to PDF]
3.3. Retrieval of KEGG Pathways Involved in Type 2 Diabetes and Calculation of Shared Pathways between Enriched Pathways and Type 2 Diabetes
The KEGG pathways linked with type 2 diabetes were obtained from miRWalk. They are listed in Table 3. Totally, there were 44 KEGG pathways involved in the development of type 2 diabetes. The common KEGG pathway between DEGs and type 2 diabetes with the highest
Table 3
Information on KEGG pathways linked with diabetes type 2.
Code | KEGG |
hsa00061 | Fatty acid biosynthesis |
hsa04910 | Insulin signaling pathway |
hsa01100 | Metabolic pathways |
hsa00640 | Propanoate metabolism |
hsa00620 | Pyruvate metabolism |
hsa04920 | Adipocytokine signaling pathway |
hsa03320 | PPAR signaling pathway |
hsa04930 | Type II diabetes mellitus |
hsa05332 | Graft versus host disease |
hsa04672 | Intestinal immune network for IgA production |
hsa05322 | Systemic lupus erythematosus |
hsa04660 | T cell receptor signaling pathway |
hsa04940 | Type I diabetes mellitus |
hsa05416 | Viral myocarditis |
hsa05330 | Allograft rejection |
hsa05320 | Autoimmune thyroid disease |
hsa04514 | Cell adhesion molecules (CAMs) |
hsa04920 | Adipocytokine signaling pathway |
hsa04512 | ECM receptor interaction |
hsa04640 | Hematopoietic cell lineage |
hsa03320 | PPAR signaling pathway |
hsa05320 | Autoimmune thyroid disease |
hsa04514 | Cell adhesion molecules (CAMs) |
hsa04660 | T cell receptor signaling pathway |
hsa04010 | MAPK signaling pathway |
hsa01100 | Metabolic pathways |
hsa00061 | Fatty acid biosynthesis |
hsa04910 | Insulin signaling pathway |
hsa04920 | Adipocytokine signaling pathway |
hsa04060 | Cytokine-cytokine receptor interaction |
hsa04630 | Jak-STAT signaling pathway |
hsa04080 | Neuroactive ligand-receptor interaction |
hsa00360 | Phenylalanine metabolism |
hsa00350 | Tyrosine metabolism |
hsa00760 | Nicotinate and nicotinamide metabolism |
hsa04920 | Adipocytokine signaling pathway |
hsa04610 | Complement and coagulation cascades |
hsa04920 | Adipocytokine signaling pathway |
hsa03320 | PPAR signaling pathway |
hsa04610 | Complement and coagulation cascades |
hsa04115 | p53 signaling pathway |
hsa04610 | Complement and coagulation cascades |
hsa04512 | ECM receptor interaction |
hsa04510 | Focal adhesion |
3.4. Targeted Transcript Factor Prediction
The targeted transcript factors of MAPKAPK3, HSPA2, and TGFBR1 were obtained from http://amp.pharm.mssm.edu/Enrichr/, which indicated ETV4 and NPE2 were the potential ones. The relationship of transcript factors, DEGs, and other targeting genes is shown in Figure 5.
[figures omitted; refer to PDF]
4. Discussion
High risk of wound infection and healing failure was found in diabetes, and the abnormal function of fibroblasts was assumed as a major issue contributing to the delayed wound healing [9–11]. Noticeably, fibroblasts exert an important role in wound inflammatory response by release of various antibacterial regulators, providing a robust defense of skin against infections [12–14]. Diabetes patients are susceptible to infections due to the dysregulated function of the T cells, leading to the overactivated tissue inflammation. In this bioinformatic research, functional enrichment analysis was performed, and the systematic results suggested that the highest
Phosphorylation of transcription is one of the modifications of MAPK-dependent regulation in cellular responses [15]. Three subfamilies were found in the MAPK signaling pathway, including the extracellular-signal-regulated kinases (ERK MAPK, Ras/Raf1/MEK/ERK), the c-Jun N-terminal or stress-activated protein kinases (JNK, SAPK), and p38 [16–18]. Once the pathway was activated, a number of downstream target kinases including MAPKAPK3 could be activated [19]. Recently, some researchers have fabricated an in situ injectable hydrogel which can markedly accelerate diabetic wound healing through activating the TGF-β/MEK/MAPK signaling pathway [20]. Similarly, Qian et al. demonstrated that protein tyrosine phosphatase 1B was capable to enhance fibroblast proliferation and mitigation via activation of the MAPK/ERK pathway, thereby promoting diabetic wound healing [21]. In the current study, we found a consistent result that the MAPK signaling pathway plays a key role in the regulation of diabetic wound healing, and MAPKAPK3, HSPA2, and TGFBR1 are the potentially critical genes in this regulation process. Moreover, to uncover the potential targeted transcript factors of MAPKAPK3, HSPA2, and TGFBR1 genes, we used the online software (Enrichr, http://amp.pharm.mssm.edu/Enrichr/) and the results suggested that ETV4 and NPE2 were the potential transcript factors for these genes. Thus, it was assumed that ETV4 and NPE2 may exert a critical role in the regulation of diabetic wound healing.
Some limitations also existed in this bioinformatic research. First, the current results were based on a public database and only two datasets were included in our study; the sample size should be enlarged to minimize the possible confounding factors. Furthermore, this is a pure bioinformatic research; more experimental validation is needed to confirm the candidate pathways and their potential transcript factors. Moreover, clinical specimens of different degrees of DFUs should be collected to validate our current findings.
5. Conclusions
Our findings suggested a functionally enriched MAPK signaling pathway, with a focus on the potential role of ETV4 and NPE2 in the regulation of diabetic wound regeneration. The current study may provide novel therapeutic targets in diabetic wound treatment.
[1] Y. Xiong, L. Chen, T. Yu, C. Yan, W. Zhou, F. Cao, X. You, Y. Zhang, Y. Sun, J. Liu, H. Xue, Y. Hu, D. Chen, B. Mi, G. Liu, "Inhibition of circulating exosomal microRNA-15a-3p accelerates diabetic wound repair," Aging, vol. 12 no. 10, pp. 8968-8986, DOI: 10.18632/aging.103143, 2020.
[2] Y. Hu, R. Tao, L. Chen, Y. Xiong, H. Xue, L. Hu, C. Yan, X. Xie, Z. Lin, A. C. Panayi, B. Mi, G. Liu, "Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis," Journal of Nanobiotechnology, vol. 19 no. 1,DOI: 10.1186/s12951-021-00894-5, 2021.
[3] Y. Xiong, L. Chen, C. Yan, W. Zhou, Y. Endo, J. Liu, L. Hu, Y. Hu, B. Mi, G. Liu, "Circulating exosomal miR-20b-5p inhibition restores Wnt9b signaling and reverses diabetes-associated impaired wound healing," Small, vol. 16 no. 3, article e1904044,DOI: 10.1002/smll.201904044, 2020.
[4] B. Mi, L. Chen, Y. Xiong, C. Yan, H. Xue, A. C. Panayi, J. Liu, L. Hu, Y. Hu, F. Cao, Y. Sun, W. Zhou, G. Liu, "Saliva exosomes-derived UBE2O mRNA promotes angiogenesis in cutaneous wounds by targeting SMAD6," Journal of Nanobiotechnology, vol. 18 no. 1, pp. 68-82, DOI: 10.1186/s12951-020-00624-3, 2020.
[5] W. Zhang, L. Chen, Y. Xiong, A. C. Panayi, A. Abududilibaier, Y. Hu, C. Yu, W. Zhou, Y. Sun, M. Liu, H. Xue, L. Hu, C. Yan, X. Xie, Z. Lin, F. Cao, B. Mi, G. Liu, "Antioxidant therapy and antioxidant-related bionanomaterials in diabetic wound healing," Frontiers in Bioengineering and Biotechnology, vol. 9,DOI: 10.3389/fbioe.2021.707479, 2021.
[6] K. Chen, T. Yu, X. Wang, "Inhibition of circulating exosomal miRNA-20b-5p accelerates diabetic wound repair," International Journal of Nanomedicine, vol. 16, pp. 371-381, DOI: 10.2147/IJN.S287875, 2021.
[7] X. Chen, W. Zhou, K. Zha, G. Liu, S. Yang, S. Ye, Y. Liu, Y. Xiong, Y. Wu, F. Cao, "Treatment of chronic ulcer in diabetic rats with self assembling nanofiber gel encapsulated-polydeoxyribonucleotide," American Journal of Translational Research, vol. 8 no. 7, pp. 3067-3076, 2016.
[8] M. Khamaisi, S. Katagiri, H. Keenan, K. Park, Y. Maeda, Q. Li, W. Qi, T. Thomou, D. Eschuk, A. Tellechea, A. Veves, C. Huang, D. P. Orgill, A. Wagers, G. L. King, "PKC δ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts," The Journal of Clinical Investigation, vol. 126 no. 3, pp. 837-853, DOI: 10.1172/JCI82788, 2016.
[9] N. C. Nowak, D. M. Menichella, R. Miller, A. S. Paller, "Cutaneous innervation in impaired diabetic wound healing," Translational Research, vol. 236, pp. 87-108, DOI: 10.1016/j.trsl.2021.05.003, 2021.
[10] R. An, Y. Zhang, Y. Qiao, L. Song, H. Wang, X. Dong, "Adipose stem cells isolated from diabetic mice improve cutaneous wound healing in streptozotocin-induced diabetic mice," Stem Cell Research & Therapy, vol. 11 no. 1, pp. 120-131, DOI: 10.1186/s13287-020-01621-x, 2020.
[11] S. D. Burr, M. B. Harmon, "The impact of diabetic conditions and AGE/RAGE signaling on cardiac fibroblast migration," Frontiers in Cell and Development Biology, vol. 8,DOI: 10.3389/fcell.2020.00112, 2020.
[12] P. A. Borges, I. Waclawiak, J. L. Georgii, V. S. Fraga-Junior, J. F. Barros, F. S. Lemos, T. Russo-Abrahão, E. M. Saraiva, C. M. Takiya, R. Coutinho-Silva, C. Penido, C. Mermelstein, J. R. Meyer-Fernandes, F. B. Canto, J. S. Neves, P. A. Melo, C. Canetti, C. F. Benjamim, "Adenosine diphosphate improves wound healing in diabetic mice through P2Y12 receptor activation," Frontiers in Immunology, vol. 12,DOI: 10.3389/fimmu.2021.651740, 2021.
[13] J. Chen, Y. Wu, C. Li, H. F. Jheng, L. Z. Kao, C. C. Yang, S. Y. Leu, I. C. Lien, W. T. Weng, H. C. Tai, Y. W. Chiou, M. J. Tang, P. J. Tsai, Y. S. Tsai, "PPAR γ activation improves the microenvironment of perivascular adipose tissue and attenuates aortic stiffening in obesity," Journal of Biomedical Science, vol. 28 no. 1, pp. 22-35, DOI: 10.1186/s12929-021-00720-y, 2021.
[14] A. Shaikh-Kader, N. N. Houreld, N. K. Rajendran, H. Abrahamse, "Levels of Cyclooxygenase 2, Interleukin-6, and Tumour Necrosis Factor- α in Fibroblast Cell Culture Models after Photobiomodulation at 660 nm," Oxidative Medicine and Cellular Longevity, vol. 2021,DOI: 10.1155/2021/6667812, 2021.
[15] Y. Liu, W. Liu, Z. Yu, Y. Zhang, Y. Li, D. Xie, G. Xie, L. Fan, S. He, "A novel BRD4 inhibitor suppresses osteoclastogenesis and ovariectomized osteoporosis by blocking RANKL-mediated MAPK and NF- _ κ _ B pathways," Cell Death & Disease, vol. 12 no. 7, pp. 654-669, DOI: 10.1038/s41419-021-03939-7, 2021.
[16] Q. Ling, F. Li, X. Zhang, S. Mao, X. Lin, J. Pan, W. Ye, W. Wei, Y. Qian, C. Hu, X. Huang, J. Wang, H. Wang, J. Huang, Y. Wang, J. Jin, "MAP4K1 functions as a tumor promotor and drug mediator for AML via modulation of DNA damage/repair system and MAPK pathway," eBioMedicine, vol. 69,DOI: 10.1016/j.ebiom.2021.103441, 2021.
[17] A. Cordido, L. Nuñez-Gonzalez, J. M. Martinez-Moreno, O. Lamas-Gonzalez, L. Rodriguez-Osorio, M. V. Perez-Gomez, D. Martin-Sanchez, P. Outeda, M. Chiaravalli, T. Watnick, A. Boletta, C. Diaz, A. Carracedo, A. B. Sanz, A. Ortiz, M. A. Garcia-Gonzalez, "TWEAK signaling pathway blockade slows cyst growth and disease progression in autosomal dominant polycystic kidney disease," Journal of the American Society of Nephrology, vol. 32 no. 8, pp. 1913-1932, DOI: 10.1681/ASN.2020071094, 2021.
[18] T. Shi, D. M. K. van Soest, P. E. Polderman, B. M. T. Burgering, T. B. Dansen, "DNA damage and oxidant stress activate p53 through differential upstream signaling pathways," Free Radical Biology & Medicine, vol. 172, pp. 298-311, DOI: 10.1016/j.freeradbiomed.2021.06.013, 2021.
[19] S. Kataoka, P. Manandhar, J. Lee, C. J. Workman, H. Banerjee, A. L. Szymczak-Workman, M. Kvorjak, J. Lohmueller, L. P. Kane, "The costimulatory activity of Tim-3 requires Akt and MAPK signaling and its recruitment to the immune synapse," Science Signaling, vol. 14 no. 687,DOI: 10.1126/scisignal.aba0717, 2021.
[20] P. Lou, S. Liu, Y. Wang, C. Pan, X. Xu, M. Zhao, G. Liao, G. Yang, Y. Yuan, L. Li, J. Zhang, Y. Chen, J. Cheng, Y. Lu, J. Liu, "Injectable self-assembling peptide nanofiber hydrogel as a bioactive 3D platform to promote chronic wound tissue regeneration," Acta Biomaterialia, vol. 135, pp. 100-112, DOI: 10.1016/j.actbio.2021.08.008, 2021.
[21] L. Qian, Q. Wang, C. Wei, L. Wang, Y. Yang, X. Deng, J. Liu, F. Qi, "Protein tyrosine phosphatase 1B regulates fibroblasts proliferation, motility and extracellular matrix synthesis via the MAPK/ERK signalling pathway in keloid," Experimental Dermatology,DOI: 10.1111/exd.14443, 2021.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2021 Weirong Zhu et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Fibroblasts are the essential cell type of skin, highly involved in the wound regeneration process. In this study, we sought to screen out the novel genes which act important roles in diabetic fibroblasts through bioinformatic methods. A total of 811 and 490 differentially expressed genes (DEGs) between diabetic and normal fibroblasts were screened out in GSE49566 and GSE78891, respectively. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in type 2 diabetes were retrieved from miRWalk. Consequently, the integrated bioinformatic analyses revealed the shared KEGG pathways between DEG-identified and diabetes-related pathways were functionally enriched in the MAPK signaling pathway, and the MAPKAPK3, HSPA2, TGFBR1, and p53 signaling pathways were involved. Finally, ETV4 and NPE2 were identified as the targeted transcript factors of MAPKAPK3, HSPA2, and TGFBR1. Our findings may throw novel sight in elucidating the molecular mechanisms of fibroblast pathologies in patients with diabetic wounds and targeting new factors to advance diabetic wound treatment in clinic.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer