Full text

Turn on search term navigation

© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A ratchet is an essential component of the ratchet pawl mechanism. But the traditional ratchet strength check method has certain limitations in the design process. In this paper, the stress analysis of the ratchet is discussed and a precision mathematical model for the ratchet tooth root bending stress is proposed for the first time. This model was established by the folded section and defined by the incision effect theory. To test the prediction ability of the proposed mathematical model, the maximum stress of three standard ratchets and one non-standard ratchet were analyzed by the FEA (finite element analysis) method. The non-standard ratchet was adapted in the ratchet experiment to analyze its maximum stress. The analysis results presented in this paper show that the proposed mathematical model has a good predictability, regardless of whether it is a standard or non-standard ratchet. It is recommended that this model can be used to predict the ratchet tooth root bending stress in the ratchet design process.

Details

Title
Precise mathematical model for the ratchet tooth root bending stress
Author
Liu, Chao 1 ; Ding, Ning 2 ; Duan, Jingsong 2 ; Zhou, Lili 2 ; Cui, Shanfu 2 ; Jiang, Shuna 2 ; Li, Aofei 2 

 School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China 
 School of Mechanical and Vehicle Engineering, Changchun University, Changchun 130022, China 
Pages
1105-1113
Publication year
2021
Publication date
2021
Publisher
Copernicus GmbH
ISSN
21919151
e-ISSN
2191916X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2611543030
Copyright
© 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.