Full text

Turn on search term navigation

© 2021 by Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Plant pathogens represent a constant threat to human and animal food, as well as the economy. International trading is constantly expanding and has been known as a means of transportation and introduction for plant pests (e.g., bacteria, viruses, fungi, and insects) in new areas. They can damage or completely ruin a harvest and there are often strict regulations for the most unwanted plant pests in order to keep their incidence confined. The fungal plant pathogen Tilletia indica causes Karnal bunt, a wheat disease that breaks or hollows grains, grows in dark powdery masses, and emits a foul fishy odor, and is therefore highly regulated by a number of country authorities, many of which respond by imposing quarantine regulations. While there are many diagnostic methods developed (microscopy, molecular assays, etc.) to identify Karnal bunt, they have limitations. This study presents four highly sensitive quantitative PCR assays with molecular probes targeting unknown genomic regions for the detection and identification of T. indica and T. walkeri—its closest relative—and the species-complex including both species. Bioinformatics analyses of DNA sequences were used to design the toolkit presented.

Abstract

Several fungi classified in the genus Tilletia are well-known to infect grass species including wheat (Triticum). Tilletia indica is a highly unwanted wheat pathogen causing Karnal bunt, subject to quarantine regulations in many countries. Historically, suspected Karnal bunt infections were identified by morphology, a labour-intensive process to rule out other tuberculate-spored species that may be found as contaminants in grain shipments, and the closely-related pathogen T. walkeri on ryegrass (Lolium). Molecular biology advances have brought numerous detection tools to discriminate Tilletia congeners (PCR, qPCR, etc.). While those tests may help to identify T. indica more rapidly, they share weaknesses of targeting insufficiently variable markers or lacking sensitivity in a zero-tolerance context. A recent approach used comparative genomics to identify unique regions within target species, and qPCR assays were designed in silico. This study validated four qPCR tests based on single-copy genomic regions and with highly sensitive limits of detection (~200 fg), two to detect T. indica and T. walkeri separately, and two newly designed, targeting both species as a complex. The assays were challenged with reference DNA of the targets, their close relatives, other crop pathogens, the wheat host, and environmental specimens, ensuring a high level of specificity for accurate discrimination.

Details

Title
Four In Silico Designed and Validated qPCR Assays to Detect and Discriminate Tilletia indica and T. walkeri, Individually or as a Complex
Author
Tremblay, Émilie D 1   VIAFID ORCID Logo  ; Carey, Julie 1 ; Bilodeau, Guillaume J 2   VIAFID ORCID Logo  ; Hambleton, Sarah 1 

 Agriculture and Agri-Food Canada (AAFC), 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; [email protected] 
 Canadian Food Inspection Agency (CFIA), 3851 Fallowfield Road, Ottawa, ON K2H 8P9, Canada; [email protected] 
First page
1295
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20797737
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612738491
Copyright
© 2021 by Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.