Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Foreign material (FM) found on a poultry product lowers the quality and safety of the product. We developed a fusion method combining two hyperspectral imaging (HSI) modalities in the visible-near infrared (VNIR) range of 400–1000 nm and the short-wave infrared (SWIR) range of 1000–2500 nm for the detection of FMs on the surface of fresh raw broiler breast fillets. Thirty different types of FMs that could be commonly found in poultry processing plants were used as samples and prepared in two different sizes (5 × 5 mm2 and 2 × 2 mm2). The accuracies of the developed Fusion model for detecting 2 × 2 mm2 pieces of polymer, wood, and metal were 95%, 95%, and 81%, respectively, while the detection accuracies of the Fusion model for detecting 5 × 5 mm2 pieces of polymer, wood, and metal were all 100%. The performance of the Fusion model was higher than the VNIR- and SWIR-based detection models by 18% and 5%, respectively, when F1 scores were compared, and by 38% and 5%, when average detection rates were compared. The study results suggested that the fusion of two HSI modalities could detect FMs more effectively than a single HSI modality.

Details

Title
Detection of Foreign Materials on Broiler Breast Meat Using a Fusion of Visible Near-Infrared and Short-Wave Infrared Hyperspectral Imaging
Author
Chung, Soo; Yoon, Seung-Chul  VIAFID ORCID Logo 
First page
11987
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612743590
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.