Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper is concerned with the existence and uniqueness of solutions for a Hilfer–Hadamard fractional differential equation, supplemented with mixed nonlocal (multi-point, fractional integral multi-order and fractional derivative multi-order) boundary conditions. The existence of a unique solution is obtained via Banach contraction mapping principle, while the existence results are established by applying the fixed point theorems due to Krasnoselskiĭ and Schaefer and Leray–Schauder nonlinear alternatives. We demonstrate the application of the main results by presenting numerical examples. We also derive the existence results for the cases of convex and non-convex multifunctions involved in the multi-valued analogue of the problem at hand.

Details

Title
Hilfer–Hadamard Fractional Boundary Value Problems with Nonlocal Mixed Boundary Conditions
Author
Bashir, Ahmad 1   VIAFID ORCID Logo  ; Ntouyas, Sotiris K 2   VIAFID ORCID Logo 

 Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; [email protected] 
 Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece 
First page
195
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
25043110
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612763265
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.