Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The aim of this work is to develop an algorithm that is able to provide predictions of wind speed statistics (WSS) in renewable energy environments. The subject is clearly interesting, as predictions of storms and extreme winds are important for decision makers and emergency response teams in renewable energy environments, e.g., in places where wind turbines could be located, including cities. The goal of the work is achieved through two phases: (a) During the preparation phase, the construction of a big WSS database based on computational fluid dynamics (CFD) is carried out, which includes flow fields of different wind directions in all grid numerical points; (b) In the second phase, the algorithm is used to find the records in the WSS database with the closest meteorological conditions to the meteorological conditions of interest. The evaluation of the CFD model (including both RANS and LES turbulence methodologies) is performed using the experimental data of the MUST (Mock Urban Setting Test) wind tunnel experiment.

Details

Title
Development of an Algorithm for Prediction of the Wind Speed in Renewable Energy Environments
Author
Efthimiou, George  VIAFID ORCID Logo  ; Barmpas, Fotios; Tsegas, George; Moussiopoulos, Nicolas
First page
461
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
23115521
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612766990
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.