Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The expansion of Internet of Things (IoT) services and the huge amount of data generated by different sensors signify the importance of cloud computing services such as Storage as a Service more than ever. IoT traffic imposes such extra constraints on the cloud storage service as sensor data preprocessing capability and load-balancing between data centers and servers in each data center. Furthermore, service allocation should be allegiant to the quality of service (QoS). In the current work, an algorithm is proposed that addresses the QoS in storage service allocation. The proposed hybrid multi-objective water cycle and grey wolf optimizer (MWG) considers different QoS objectives (e.g., energy, processing time, transmission time, and load balancing) in both the fog and cloud Layers, which were not addressed altogether. The MATLAB script is used to simulate and implement our algorithms, and services of different servers, e.g., Amazon, Dropbox, Google Drive, etc., are considered. The MWG has 7%, 13%, and 25% improvement, respectively, in comparison with multi-objective water cycle algorithm (MOWCA), k-means based GA (KGA), and non-dominated sorting genetic algorithm (NSGAII) in metric of spacing. Moreover, the MWG has 4%, 4.7%, and 7.3% optimization in metric of quality in comparison to MOWCA, KGA, and NSGAII, respectively. The new hybrid algorithm, MWG, not only yielded to the consideration of three objectives in service selection but also improved the performance compared to the works that considered one or two objective(s). The overall optimization shows that the MWG algorithm has 7.8%, 17%, and 21.6% better performance than MOWCA, KGA, and NSGAII in the obtained best result by considering different objectives, respectively.

Details

Title
Intelligent Service Selection in a Multi-Dimensional Environment of Cloud Providers for Internet of Things Stream Data through Cloudlets
Author
Omid Halimi Milani 1 ; Seyyed Ahmad Motamedi 2 ; Sharifian, Saeed 2 ; Nazari-Heris, Morteza 3   VIAFID ORCID Logo 

 Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA; [email protected] 
 Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 159163-4311, Iran; [email protected] (S.A.M.); [email protected] (S.S.) 
 Department of Architectural Engineering, 104 Engineering Unit A, Pennsylvania State University, University Park, PA 16802, USA 
First page
8601
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612784270
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.