Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

European ash (Fraxinus excelsior) is highly affected by the pathogenic fungus Hymenoscyphus fraxineus in all of Europe. Increases in plant’s secondary metabolite (SM) production is often linked tol enhanced resistance to stress, both biotic and abiotic. Moreover, plant-associated bacteria have been shown to enhance SM production in inoculated plants. Thus, our hypothesis is that bacteria may boost ash SM production, hence priming the tree’s metabolism and facilitating higher levels of resilience to H. fraxineus. We tested three different ash genotypes and used Paenibacillus sp. and Pseudomonas sp. for inoculation in vitro. Total phenol (TPC), total flavonoid (TFC) and carotenoid contents were measured, as well as the chlorophyll a/b ratio and morphometric growth parameters, in a two-stage trial, whereby seedlings were inoculated with the bacteria during the first stage and with H. fraxineus during the second stage. While the tested bacteria did not positively affect the morphometric growth parameters of ash seedlings, they had a statistically significant effect on TPC, TFC, the chlorophyll a/b ratio and carotenoid content in both stages, thus confirming our hypothesis. Specifically, in ash genotype 64, both bacteria elicited an increase in carotenoid content, TPC and TFC during both stages. Additionally, Pseudomonas sp. inoculated seedlings demonstrated an increase in phenolics after infection with the fungus in both genotypes 64 and 87. Our results indicate that next to genetic selection of the most resilient planting material for ash reforestation, plant-associated bacteria could also be used to boost ash SM production.

Details

Title
Priming of Resistance-Related Phenolics: A Study of Plant-Associated Bacteria and Hymenoscyphus fraxineus
Author
Striganavičiūtė, Greta  VIAFID ORCID Logo  ; Žiauka, Jonas; Vaida Sirgedaitė-Šėžienė  VIAFID ORCID Logo  ; Vaitiekūnaitė, Dorotėja
First page
2504
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20762607
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612812832
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.