Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Extracting road information from high-resolution remote sensing images (HRI) can provide crucial geographic information for many applications. With the improvement of remote sensing image resolution, the image data contain more abundant feature information. However, this phenomenon also enhances the spatial heterogeneity between different types of roads, making it difficult to accurately discern the road and non-road regions using only spectral characteristics. To remedy the above issues, a novel residual attention and local context-aware network (RALC-Net) is proposed for extracting a complete and continuous road network from HRI. RALC-Net utilizes a dual-encoder structure to improve the feature extraction capability of the network, whose two different branches take different feature information as input data. Specifically, we construct the residual attention module using the residual connection that can integrate spatial context information and the attention mechanism, highlighting local semantics to extract local feature information of roads. The residual attention module combines the characteristics of both the residual connection and the attention mechanism to retain complete road edge information, highlight essential semantics, and enhance the generalization capability of the network model. In addition, the multi-scale dilated convolution module is used to extract multi-scale spatial receptive fields to improve the model’s performance further. We perform experiments to verify the performance of each component of RALC-Net through the ablation study. By combining low-level features with high-level semantics, we extract road information and make comparisons with other state-of-the-art models. The experimental results show that the proposed RALC-Net has excellent feature representation ability and robust generalizability, and can extract complete road information from a complex environment.

Details

Title
A Residual Attention and Local Context-Aware Network for Road Extraction from High-Resolution Remote Sensing Imagery
Author
Liu, Ziwei 1 ; Wang, Mingchang 2   VIAFID ORCID Logo  ; Wang, Fengyan 1   VIAFID ORCID Logo  ; Xue Ji 1   VIAFID ORCID Logo 

 College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China; [email protected] (Z.L.); [email protected] (F.W.); [email protected] (X.J.) 
 College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China; [email protected] (Z.L.); [email protected] (F.W.); [email protected] (X.J.); Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518000, China 
First page
4958
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612846826
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.