Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sea level prediction is essential for the design of coastal structures and harbor operations. This study presents a methodology to predict sea level changes using sea level height and meteorological factor observations at a tide gauge in Antalya Harbor, Turkey. To this end, two different scenarios were established to explore the most feasible input combinations for sea level prediction. These scenarios use lagged sea level observations (SC1), and both lagged sea level and meteorological factor observations (SC2) as the input for predictive modeling. Cross-correlation analysis was conducted to determine the optimum input combination for each scenario. Then, several predictive models were developed using linear regressions (MLR) and adaptive neuro-fuzzy inference system (ANFIS) techniques. The performance of the developed models was evaluated in terms of root mean squared error (RMSE), mean absolute error (MAE), scatter index (SI), and Nash Sutcliffe Efficiency (NSE) indices. The results showed that adding meteorological factors as input parameters increases the performance accuracy of the MLR models up to 33% for short-term sea level predictions. Moreover, the results contributed a more precise understanding that ANFIS is superior to MLR for sea level prediction using SC1- and SC2-based input combinations.

Details

Title
Sea Level Prediction Using Machine Learning
Author
Tur, Rifat 1 ; Tas, Erkin 1   VIAFID ORCID Logo  ; Ali Torabi Haghighi 2   VIAFID ORCID Logo  ; Mehr, Ali Danandeh 3   VIAFID ORCID Logo 

 Department of Civil Engineering, Akdeniz University, Antalya 07070, Turkey; [email protected] 
 Water Energy and Environmental Engineering Research Unit, University of Oulu, 90570 Oulu, Finland; [email protected] (A.T.H.); [email protected] (A.D.M.) 
 Water Energy and Environmental Engineering Research Unit, University of Oulu, 90570 Oulu, Finland; [email protected] (A.T.H.); [email protected] (A.D.M.); Department of Civil Engineering, Antalya Bilim University, Antalya 07190, Turkey 
First page
3566
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2612858878
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.