It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
At the Center for Advanced Laser Applications (CALA), Garching, Germany, the LION (Laser-driven ION Acceleration) experiment is being commissioned, aiming at the production of laser-driven bunches of protons and light ions with multi-MeV energies and repetition frequency up to 1 Hz. A Geant4 Monte Carlo-based study of the secondary neutron and photon fields expected during LION’s different commissioning phases is presented. Goal of this study is the characterization of the secondary radiation environment present inside and outside the LION cave. Three different primary proton spectra, taken from experimental results reported in the literature and representative of three different future stages of the LION’s commissioning path are used. Together with protons, also electrons are emitted through laser-target interaction and are also responsible for the production of secondary radiation. For the electron component of the three source terms, a simplified exponential model is used. Moreover, in order to reduce the simulation complexity, a two-components simplified geometrical model of proton and electron sources is proposed. It has been found that the radiation environment inside the experimental cave is either dominated by photons or neutrons depending on the position in the room and the source term used. The higher the intensity of the source, the higher the neutron contribution to the total dose for all scored positions. Maximum neutron and photon ambient dose equivalent values normalized to 109 simulated incident primaries were calculated at the exit of the vacuum chamber, where values of about 85 nSv (109 primaries)−1 and 1.0 μSv (109 primaries)−1 were found.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Helmholtz Zentrum München, Institute of Radiation Medicine, Neuherberg, Germany (GRID:grid.4567.0) (ISNI:0000 0004 0483 2525)
2 Ludwig-Maximilians-Universität, Department of Medical Physics, Faculty of Physics, Garching bei München, Germany (GRID:grid.5252.0) (ISNI:0000 0004 1936 973X); Max-Planck-Institute for Quantum Optics, Garching bei München, Germany (GRID:grid.450272.6) (ISNI:0000 0001 1011 8465)
3 Ludwig-Maximilians-Universität, Department of Medical Physics, Faculty of Physics, Garching bei München, Germany (GRID:grid.5252.0) (ISNI:0000 0004 1936 973X)