It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Several physics mechanisms can lead to the deviation from an isotropic angular distribution for both fission fragments and the neutrons that are emitted during the fission event. Two of these effects have recently been implemented into CGMF, the Monte Carlo fission event generator developed at Los Alamos National Laboratory: angular distribution sampling for fission fragments and pre-equilibrium neutrons (those emitted before the compound nucleus forms). Using these new developments, we show that the anisotropy of the neutrons reflects the anisotropy of the fission fragments, in particular as the outgoing energy of neutrons increases. Correlations between the fission fragment and neutron anisotropies could be used to extract the fission fragment anisotropy from the neutron angular distributions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer