It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Coastal areas worldwide are often densely populated and host regional agricultural and industrial hubs. Strict water quality requirements for agricultural, industrial and domestic use are regularly not satisfied by surface waters in coastal areas and consequently lead to over-exploitation of local fresh groundwater resources. Additional pressure by both climate change and population growth further intensifies the upcoming water stress and raise the urgency to search for new fresh water sources. In recent years, offshore fresh groundwater (OFG) reserves have been identified as such a potential water source. In this study, we quantify, for the first time, the global volume of OFG in unconsolidated coastal aquifers using numerical groundwater models. Our results confirm previously reported widespread presence of OFG along the global coastline. Furthermore, we find that these reserves are likely non-renewable resources mostly deposited during glacial periods when sea levels were substantially lower compared to current sea level. We estimate the total OFG volume in unconsolidated coastal aquifers to be approximately 1.06 ± 0.2 million km3, which is roughly three times more than estimated previously and about 10% of all terrestrial fresh groundwater. With extensive active and inactive offshore oil pumping present in areas of large OFG reserves, they could be considered for temporary fresh groundwater exploration as part of a transition to sustainable water use in coastal areas on the long run.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Physical Geography, Utrecht University, Utrecht, The Netherlands
2 Department of Physical Geography, Utrecht University, Utrecht, The Netherlands; Deltares, Delft, The Netherlands