It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Understanding the behavior of the borehole temperature recovery process, which influences drilling operations, requires an adequate estimation of fluid temperature. The presence of salt in a saline formation changes the composition of the annular fluid and has a significant impact on the fluid temperature distribution during drilling operations. As a result, while drilling a saline formation, it is vital to examine the key parameter that determines an accurate estimate of fluid temperature. Using python software and statistical quantitative methods, this study proposes a simplified user-friendly computational system that analyzes the drilling fluid systems performance evaluation and selection optimization.
The fluid temperature distribution of X Field in China was analyzed using Shan mathematical model as a base model. When compared to MWD data from the field, the model predicted the temperature distribution of the field with less than 10% error. An adjustment factor was introduced to the base model to accommodate for changes in annular fluid composition while drilling a saline formation. The findings show that salt concentration has an impact on fluid temperature distribution during drilling. The fluid temperature at the wellbore condition changes by at least 7% with both high and low adjustment factors. Because the salt in the formation inflow dissolves in the drilling fluid near the annulus, the rheology of the fluid combination changes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 University of Louisiana at Lafayette, Lafayette, USA (GRID:grid.266621.7) (ISNI:0000 0000 9831 5270)
2 Mewbourne School of Petroleum and Geological Engineering, University of Oklahoma, Norman, USA (GRID:grid.266900.b) (ISNI:0000 0004 0447 0018)