It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
KRAS mutations drive resistance to targeted therapies, including EGFR inhibitors in colorectal cancer (CRC). Through genetic screens, we unexpectedly find that mutant HRAS, which is rarely found in CRC, is a stronger driver of resistance than mutant KRAS. This difference is ascribed to common codon bias in HRAS, which leads to much higher protein expression, and implies that the inherent poor expression of KRAS due to rare codons must be surmounted during drug resistance. In agreement, we demonstrate that primary resistance to cetuximab is dependent upon both KRAS mutational status and protein expression level, and acquired resistance is often associated with KRASQ61 mutations that function even when protein expression is low. Finally, cancer cells upregulate translation to facilitate KRASG12-driven acquired resistance, resulting in hypersensitivity to translational inhibitors. These findings demonstrate that codon bias plays a critical role in KRAS-driven resistance and provide a rationale for targeting translation to overcome resistance.
KRAS mutations drive resistance to diverse targeted therapies. In this study, the authors show that the rare codons of KRAS, yielding low oncogene expression, can be overcome to drive resistance to anti-EGFR therapy in CRC through upregulation of global translation or through selection of more potent KRASQ61mutations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Duke University, Department of Pharmacology and Cancer Biology, Durham, USA (GRID:grid.26009.3d) (ISNI:0000 0004 1936 7961)
2 University of Torino, Department of Oncology, Candiolo, Italy (GRID:grid.7605.4) (ISNI:0000 0001 2336 6580); Candiolo Cancer Institute-FPO, IRCCS, Candiolo, Italy (GRID:grid.419555.9) (ISNI:0000 0004 1759 7675)