It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The paper proposes an algorithm for safeness verification of a Petri net-based specification of the control part of cyber-physical systems. The method involves a linear algebra technique and is based on the computation of the state machine cover of a Petri net. Contrary to the well-known methods, the presented idea does not require obtaining all sequential components, nor the computation of all reachable states in the system. The efficiency and effectiveness of the proposed method have been verified experimentally with a set of 243 test modules (Petri net-based systems). The results of experiments show high efficiency of the proposed method since a solution has been found even for such nets where popular techniques are not able to analyze the safeness of the system. Finally, the presented algorithm is explained in detail using a real-life case-study example of the control part of a cyber-physical system.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute of Control and Computation Engineering, University of Zielona Góra, ul. Szafrana 2, 65-516 Zielona Góra, Poland